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Model output of localized flood grids are useful in characterizing flood hazards

for properties located in the Special Flood Hazard Area (SFHA—areas expected

to experience a 1% or greater annual chance of flooding). However, due

to the unavailability of higher return-period [i.e., recurrence interval, or the

reciprocal of the annual exceedance probability (AEP)] flood grids, the flood risk

of properties located outside the SFHA cannot be quantified. Here, we present

a method to estimate flood hazards that are located both inside and outside

the SFHA using existing AEP surfaces. Flood hazards are characterized by the

Gumbel extreme value distribution to project extreme flood event elevations

for which an entire area is assumed to be submerged. Spatial interpolation

techniques impute flood elevation values and are used to estimate flood

hazards for areas outside the SFHA. The proposed method has the potential

to improve the assessment of flood risk for properties located both inside

and outside the SFHA and therefore to improve the decision-making process

regarding flood insurance purchases, mitigation strategies, and long-term

planning for enhanced resilience to one of the world’s most ubiquitous

natural hazards.

KEYWORDS

annual exceedance probability (AEP), Gumbel extreme value distribution, spatial

interpolation techniques, Special Flood Hazard Area (SFHA), Federal Emergency
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Introduction

The perilous and expensive nature of flood hazards calls for concurrent

improvements in the ability of scientists to measure their risk (Kron, 2005). Moreover,

rapid increases in the population living in marginal areas relative to the flood hazards

(Moulds et al., 2021), amid the consequences of land use changes such as in Bangladesh

(Dewan et al., 2007), Belgium (Akter et al., 2018), India (Guhathakurta et al., 2011),

China (Shen et al., 2021), the United States (Qiang et al., 2017), and elsewhere, a

changing climate (Zhou et al., 2012; Kreibich et al., 2015), sea level rise (Nicholls

et al., 1999; Bushra et al., 2021), and local factors such as subsidence (Mostafiz et al.,

2021a) and extreme weather events (Guhathakurta et al., 2011), underline the urgent
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need for accelerated improvements in flood risk assessment

(Merz et al., 2014; Mostafiz, 2022). Yet proportionately little

advancement has beenmade. Flood risk maps are often outdated

and ignore expression of uncertainty in the depth-duration

vs. return period [i.e., recurrence interval, or the reciprocal of

the annual exceedance probability (AEP)] relationships (Hassini

and Guo, 2017; Tuyls et al., 2018). Consequences of this gap

in scientific analysis ripple into many facets of flood awareness,

communication, modeling, planning, preparation, and recovery

(Huang and Xiao, 2015). Thus, improved quantification of flood

hazards, and therefore flood risk, is crucial not only for its own

sake, but also for the benefit of other, related efforts to reduce

flood-induced losses to life and property (Merz et al., 2014;

Mostafiz et al., 2021b, 2022a; Al Assi et al., 2022a; Gnan et al.,

2022a; Rahim et al., 2022a).

One component of flood hazard quantification that is

of particular importance in planning for development is the

accurate estimations of return-period-based flood depths (Yang

et al., 2020). This is especially important for infrastructure

that is expected to be protected during its service over a long

period of usefulness (Requena et al., 2013), such as residential

and commercial construction, roads, bridges, tunnels, and

historical/cultural sites. Not only do lives and livelihoods depend

on the protection of such flood-safe infrastructure (Wiering,

2019), but renovating and rebuilding these resources after a flood

is expensive, disruptive, unpleasant, and incongruent with the

ongoing quest for healthier and more resilient individuals and

communities (Sayers et al., 2018), if it is possible at all.

Not surprisingly given the paucity of updated scientific work

on flood, few if any historical records of such estimates may

exist to guide construction, protection, or restoration efforts.

Thus, reliance on hydrologic and hydraulic modeling of flood

events as a function of AEP is necessary (Mostafiz et al., 2021c).

However, relatively flood-safe areas often have “null” (i.e., zero

or negative) depth values at modeled return periods, even while

vulnerability remains substantial during the life span of the

infrastructure (Mostafiz et al., 2021c). This leaves even fewer

known depth values for planning purposes and may compound

flood estimation errors at successively longer return periods,

which further weakens efforts to mitigate the impacts of the

most destructive floods (Kundzewicz et al., 2013). Therefore,

stochastic statistical methods are vital tools to enhance the

hydrologic-modeled data for estimating flood (McCuen, 2016),

to provide construction specialists, architects, developers, and

urban and regional planners with adequate information to build

more resilient facilities and communities (Olsen et al., 2015).

Previous research has focused on estimating flood hazard

and risk for properties located inside the Special Flood Hazard

Area (SFHA—areas exposed to 1% or greater annual chance

of flooding), where flood insurance is mandatory (e.g., Posey

and Rogers, 2010; Habete and Ferreira, 2017; Johnston and

Moeltner, 2019; Mobley et al., 2021). The areas outside the

SFHA are divided into the “shaded X Zone” (i.e., between 1

and 0.2% annual chance of flooding inundation areas) and the

“unshaded X Zone” (i.e., outside of the 0.2% annual chance

of flooding inundation area) (Crowell et al., 2010). Generally,

no estimates of flood risk exist for properties located in

the shaded or unshaded X Zones (Czajkowski et al., 2013).

Additionally, flood insurance is not mandatory in these areas

(Kousky, 2018), despite the fact that the flood risk is non-

zero, may be substantial (especially where valuable and/or

expensive infrastructure exists), and may be poorly understood

by scientists (Czajkowski et al., 2013). The properties inside

the shaded X Zone are considered to have “moderate” flood

risk whereas properties inside the unshaded X Zone are labeled

as being subjected to “minimal” flood risk (FEMA, 2005),

even though the precise risk throughout the zone is currently

unknown. The need for greater quantitative techniques is

obvious, so that citizen constituents and government leaders are

more aware of the risks that they and their communities face

(Mostafiz et al., 2022b).

The overarching goal of this research is to characterize flood

hazards at locations both inside and outside the SFHA. More

specifically, the research addresses the question, “If no modeled

flood data exist for some or all return periods, what are the flood

characteristics?” To that end, this research introduces a method

for describing flood hazards whereby the flood is characterized

using the Gumbel extreme value distribution (Waylen andWoo,

1982; Nadarajah and Kotz, 2004; Al Assi et al., 2022b), and flood

elevations are projected at higher return periods (Mostafiz et al.,

2021c). The gaps in flood surfaces due to limited data are filled by

spatial interpolation techniques. These filled elevation values are

then used to estimate floods for the locations inside the shaded

or unshaded X Zones.

The contribution of this research is the development of a

novel method to estimate flood hazard characteristics based

on existing hydrologic-modeled flood surfaces. Ultimately,

this technique will help government agencies and community

officials to formulate policies and homeowners to make more

informed decisions regarding insurance purchase (Rahim et al.,

2021, 2022b), mitigation strategy (Zhou et al., 2012; Zarekarizi

et al., 2020), and long-term planning (Gnan et al., 2022b,c).

Method

The method consists of extrapolating flood depths using

the Gumbel extreme value distribution at the locations where

a Gumbel fit is possible because flood depths for at least two

return periods are known. Extreme return periods are selected

where most of the study area is assumed to be submerged

(Figure 1). Then, spatial interpolation techniques (Lam, 1983;

Dewan, 2013), including moving average (e.g., Haining, 1978;

Chang et al., 1984), inverse distance weighting (IDW; e.g.,

Fassnacht et al., 2003; Lu and Wong, 2008), natural neighbor

(e.g., Watson, 1999; da Silva et al., 2019), and kriging (e.g.,
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FIGURE 1

Schematic representation of the concept behind the flood depth surface estimating method.

FIGURE 2

Schematic summary of the flood hazard characterization method.

Delhomme, 1978; Oliver and Webster, 1990), are used to

estimate the flood elevation for the extreme return periods at

grid cells for which no data-derived distribution can be fit

confidently. It is necessary to use flood elevation rather than

flood depth for spatial interpolation because flood depth cannot

be smoothed across space, while flood elevation is generally

insensitive to differences in surface elevation. The imputed

extreme-return-period flood elevations are then fit with the

Gumbel distribution and used to estimate flood depth for

locations that are unflooded at shorter return periods to verify

that negative values, confirming that the surface is not flooded at

that return period) are returned. Through this method, the flood

depth vs. annual non-exceedance probability relationships are

established for all locations in the study area, which can then be

used to develop flood hazard estimates that are more reasonable

to expect within the useful life of the building or settlement. The

overall schematic summary of the flood hazard characterization

method is shown in Figure 2.
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FIGURE 3

Study area in Metairie, Louisiana.

Study area and data

A frequently-flooded residential neighborhood in Metairie,

Louisiana (Jefferson Parish), bounded by the area shown in

Figure 3, is used for this case study. This site is chosen

primarily because of the availability of model-output flood depth

grids for four return periods-−10, 50, 100, and 500 years—

developed at a scale of 3.048 × 3.048m, by FEMA through its

Risk Mapping, Assessment and Planning (Risk MAP) program

(FEMA, 2021). Although recent research has noted issues with

FEMA methodologies and has enhanced flood characterization

(Wing et al., 2017, 2018; Bates et al., 2021), these data are

considered here due to the wide availability in the United States.

The grid cells located within SFHA have at least two flood

depth values (i.e., 100– and 500-year return periods) for which

the Gumbel distribution can be fit initially (described in Section

2.3). For the grid cells located in shaded-X zone (i.e., only

500-year flood depth is available) or unshaded-X zone (i.e., no

flood information available), spatial interpolation is conducted

to characterize flood in these grids (described in Section 2.4).

The study area consists of 44 census blocks with a total

area of∼1.126 km2. The mean elevation in this below-sea-level,

levee-protected area is −5.5 feet with a standard deviation of

0.71 and a range of −9.0 to −2.9 feet. Descriptive statistics of

the Risk MAP-output flood depths by return period are shown

in Table 1. The spurious maximum value for the 100-year return

period, which is equal to that of the 500-year return period

(Table 1), suggests that data cleanup is necessary.

Data cleaning

Initial quality checks of the source data are performed to

identify cells with unrealistic flood depths. The three types of

spurious source data are: (1) any cell with a reported flood depth

less than or equal to zero for any return period; (2) any cell in

which a flood depth for a shorter return period equals or exceeds

that for any longer return period; and (3) any cell in which a

shorter-duration return period has a reported flood depth but

a longer return period has a null (i.e., flood-free) value. Flood

depth values for all return periods at any cell that violate any of

the three rules above are characterized as “missing.” Flood depth

values for cells in which the depth is known (i.e., non-null) for

only the 500-year return period are removed here temporarily,

but the regression parameters derived are used later to project

flood depth as a function of return period for such cells.

Gumbel fitting for cells flooded by
100-year return period event

The Gumbel distribution is a widely accepted method for

flood frequency analysis (e.g., Kumar and Bhardwaj, 2015; Singh

et al., 2018). The right-skewed nature of flood return periods

makes the Gumbel distribution ideal for estimating the depth

vs. annual non-exceedance probability relationship. TheGumbel

distribution has been shown to provide the best fit among

extreme value distributions, particularly for smaller sample sizes

(World Meteorological Organization, 1989; Onen and Bagatur,

2017).

The Gumbel extreme value probability density function

(PDF) as a function of flood depth (D) is expressed as:

f (D) =

(

1

α

)

exp

{

−

(

D− u

α

)

− exp

[

−

(

D− u

α

)]}

(1)

where α and u are the calculated, site-specific scale and

location parameters, respectively.

The cumulative distribution function (CDF) is equal to the

non-exceedance probability, P, or

P = F(D) = exp

{

−exp

[

−

(

D− u

α

)]}

(2)

Solving for D yields the Gumbel inverse CDF, where D is

obtained as a function of P and the Gumbel parameters as:

D = F−1 [F (D)] = u− α
{

ln
[

−ln (P)
]}

(3)
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TABLE 1 Descriptive statistics of preliminary (uncleaned) flood depths (feet) by return period for the Metairie, Louisiana, study area.

Return

period

(years)

Mean (ft.) Standard

deviation

(ft.)

Minimum

(ft.)

Maximum

(ft.)

Number of

flooded

cells

10 0.67 0.45 0.00 3.40 51,937

50 0.75 0.50 0.00 3.70 68,937

100 0.90 0.58 0.00 4.10 91,163

500 0.93 0.58 0.00 4.10 100,705

TABLE 2 Number of cells in the study area removed by each data

cleaning criterion.

Data cleaning rule Number

of cells

10-year flood depth ≤ 0 13

50-year flood depth ≤ 0 16

100-year flood depth ≤ 0 1

500-year flood depth ≤ 0 2

10-year flood depth ≥ 50-year flood depth 776

10-year flood depth ≥ 100-year flood depth 0

10-year flood depth ≥ 500-year flood depth 2

50-year flood depth ≥ 100-year flood depth 530

50-year flood depth ≥ 500-year flood depth 4

100-year flood depth ≥ 500-year flood depth 2,263

10-year flood depth ≥ 0 and 50-year flood depth is

NULL

7

10-year flood depth ≥ 0 and 100-year flood depth is

NULL

0

10-year flood depth ≥ 0 and 500-year flood depth is

NULL

0

50-year flood depth ≥ 0 and 100-year flood depth is

NULL

4

50-year flood depth ≥ 0 and 500-year flood depth is

NULL

1

100-year flood depth ≥ 0 and 500-year flood depth is

NULL

2,353

Total 5,972

For each cell having non-null D for at least two return

periods, all non-null return periods are used to fit the Gumbel

distribution. The site-specific u represents the D at a theoretical,

asymptotic ∼1.58-year return period. Thus, u would be positive

for cells located in coastal areas or water bodies and negative

for cells located in non-water bodies, including residential areas

(Mostafiz et al., 2021c), because a developed area would rarely

flood at a 1.58-year return period.

The cells that flood at all four (i.e., 10-, 50-, 100-, and

500-year) return periods are examined first. Such cells that

represent a water body are distinguished from those that

represent a (flood-prone) terrestrial surface. Each cell that is

actually terrestrial and has a negative u is considered to have a

plausible Gumbel fit, while each terrestrial cell with a positive u

is considered to have a spurious fit. To correct the fit for the cells

having a spurious u value, the Gumbel distribution is re-fit while

including a “dummy” 2-year return period having a D of −0.05

feet in addition to the known return period depths. A return

period of less than two years is cumbersome because calculation

of the natural logarithm function for such short return periods

yields an unstable result that approaches negative infinity for

near-zero return periods. For each cell in which the resulting re-

calculated u value based on (now) five return periods then has

the appropriate sign, the re-fit Gumbel parameters are accepted.

However, for each terrestrial cell in which the re-fit Gumbel

distribution again produces a u value with a spurious sign, the

iteration of re-fitting the Gumbel distribution (this time using a

D of −0.10 feet) is continued, with the process repeated using

incremental dummy decreases in D of −0.15 feet, −0.20 feet,

etc., with the process ending at the first iteration that generates a

negative value for u.

The cells flooded at only three (i.e., 50-, 100-, and 500-

year) return periods and having null D (i.e., flood-free) at

the shortest (i.e., 10-year) return period are treated next. For

such cells, the Gumbel distribution is fit using only the three

valid return periods, and D must be estimated for the 10-year

return period using the Gumbel distribution with the α and

u parameters derived for that cell. If such an estimate yields a

negative value for the 10-year return period, the estimation is

considered valid. However, if the calculation results in a positive

value, correction is necessary because the cell is known to be

flood-free at that return period. In such cases, a dummy 10-

year return period D of −0.05 feet is assigned, and the Gumbel

distribution is fit once again, this time using this dummy D,

along with the output for the three D values for the same cell.

For cells in which this new Gumbel fit using the dummy value

produces a “correct” condition (i.e., flood-free) regarding D, the

revised α and u Gumbel parameters are accepted for that cell.

However, for cells in which the “correct” flood condition is still

not predicted accurately, the dummy 10-year return period D is

replaced by −0.10 feet, and the Gumbel distribution is then run
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a third time for that cell. For cells in which this new dummy

D now generates a “correct” condition, the re-revised α and

u parameters are “accepted” for that cell, but for those “null”

cells still having a positive calculated 10-year-return-period D,

yet another iteration is necessary, this time using a D of −0.15

feet. Each iteration provides more cells with “correct” 10-year-

return-period D values, with the α and u Gumbel parameters

from the fit that makes the depth “correct” replacing the former

parameters. The process continues iteratively, changing the

dummy D incrementally by −0.05 feet, until all cells have a

“correct” estimation of the 10-year-return-period D.

The cells having known, positive D (i.e., flooded) at only

two (i.e., 100- and 500-year) return periods and null D values

(i.e., flood-free) at the two shortest (i.e., 10- and 50-year) return

periods are treated next. These places are less flood-prone

than those analyzed previously. For each of these cells taken

individually, the Gumbel α and u parameters are derived based

only on the two return periods and are used to estimate the

50-year return-period D. If the calculation results in a positive

value, correction is necessary because the cell is known to be

flood-free at that return period. In such cases, a dummy 50-

year return period D of −0.05 feet is assigned for such cells,

and the Gumbel distribution is fit once again, this time using

this dummy D, along with the output for the two D values for

the same cell. The process continues iteratively, changing the

dummy D incrementally by −0.05 feet, until all cells have the

“correctly” estimated sign of the 50-year-return-periodD. There

is no need to repeat the process for the cells that have 10-year-

return-period D of the “incorrect” sign, as cells that are not

flooded at the 50-year return period will not be flooded at the

10-year return period.

Parameter estimation for cells not
flooded by 100-year return period event

At each cell flooded by the 100-year return period event,

the unique α and u values are used to extrapolate D at that

cell for floods of small probabilities (i.e., higher return periods,

including 5,000-, 10,000-, 15,000, and 20,000-year), over which

the entire study area is assumed to have flooded. The flood

elevation of each of these extrapolated extreme periods is

calculated as the sum of D at that return period and the ground

elevation of the corresponding cell. It is necessary to use flood

elevation rather than D for spatial interpolation because flood

elevation is insensitive to differences in surface elevation.

Several spatial interpolation techniques are applied to the

study area, separately for each extreme return period (i.e., 5,000-,

10,000-, 15,000, and 20,000-year). Amoving average filter is used

to impute all missing flood elevation cells in the study area, by

experimenting with different window sizes. The dimensions of

the final window selected are determined as the smallest that

TABLE 3 Descriptive statistics of α and u for the location (cells)

flooded by more than one return period in the Metairie, Louisiana,

study area.

Gumbel

parameter

Mean Standard

deviation

Minimum Maximum

α 0.24 0.08 0.08 0.82

u −0.33 0.37 −3.16 0.00

TABLE 4 Descriptive statistics for α and u, after implementing a 31 ×

31 moving average and a 3 × 3 moving average, based on extrapolated

D values of the 5,000-, 10,000-, 15,000-, and 20,000-year return

periods, for locations flooded by only one (i.e., 500-year) or no return

periods, after removal of spurious cells, for the Metairie, Louisiana,

study area.

Gumbel

parameter

Mean Standard

deviation

Minimum Maximum

α 0.28 0.22 0.07 2.08

u −1.72 1.41 −12.96 −0.39

can impute all missing cells, with the same-sized window used

for all return periods. Then, because the flood elevation surface

of a completely flooded surface should be smooth, a 3 × 3

moving window is run to smooth the flood elevation surface

(i.e., reduce undulations over the flooded terrain). Along with

the moving average-smoothing, IDW, natural neighbor, and

ordinary kriging spatial interpolation techniques are also used

(separately) to impute the missing cell values. Assessment of the

relative effectiveness of each technique is conducted. The result

of the spatial interpolation procedure is a complete set of flood

elevations at each extreme return period for each cell in the study

area, including those cells for which the values were expunged at

the shorter return periods.

After deducting the ground elevation, D for the extreme

return period events (i.e., 5,000-, 10,000-, 15,000-, and 20,000-

year) is used to estimate the flood characteristics in areas

unflooded at the 500- and 100-year return periods. Several

scenarios are possible. First, for cells that have a positive 500-year

D (i.e., are flooded) but are unflooded at 100-year (and shorter)

return periods, the Gumbel distribution is fit using the 500-year

return period D along with the spatially interpolated estimates

at 5,000-, 10,000-, 15,000-, and 20,000-year return periods, and

a dummy 100-year return-periodD of−0.05 feet. If the resulting

estimation of the 100-year return-periodD is negative, the values

are accepted. However, a (falsely) positive 100-year return period

D calculation requires a refitting using the Gumbel distribution

for a 100-year return periodD of−0.10 feet. Again, if the value is

falsely positive, the iteration process continues at incrementally

changing dummy values until the 100-year return-period D is

(correctly) negative (i.e., null, or flood-free).
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TABLE 5 Descriptive statistics and root-mean-square error for Risk MAP-modeled minus predicted D, for cells having two or more

originally-modeled D from among 10-, 50-, 100-, and 500-year return periods, for Metairie, Louisiana, study area.

Mean (ft.) Standard

deviation

(ft.)

Minimum

(ft.)

Maximum

(ft.)

RMSE (ft.)

10-year 0.17 0.21 −0.25 1.58 0.27

50-year −0.01 0.09 −0.33 0.53 0.09

100-year 0.13 0.07 −0.00 0.85 0.15

500-year −0.10 0.11 −0.95 0.57 0.14

A second scenario occurs for cells that have a null D

(i.e., unflooded surface) at the 500-year return period but a

positive estimated D (i.e., flooded) at the 5,000-year return

period. For such cells, the Gumbel distribution is fit using the

spatially interpolated estimates at the 5,000-, 10,000-, 15,000-,

and 20,000-year return periods along with a dummy D of

−0.05 feet for the 500-year return period. The iteration process

continues analogously to the previous examples, but with a 500-

year return-periodD of−0.10,−0.15 feet, etc. until the 500-year

return-period D estimate is (correctly) flood-free.

Likewise, the third scenario involves cells with null (i.e.,

flood-free) D at 500- and spatially interpolated 5,000-year

return periods. In such cases, the Gumbel distribution is fit

using the 5,000-, 10,000-, 15,000-, and 20,000-year return

period estimates.

The fourth scenario involves correcting any cells for which

the spatially interpolated 5,000-year depth is spuriously less than

the Risk MAP-modeled 500-year D. In those cases, the Gumbel

distribution is fit using the 500-yearD along with a dummy flood

100-year return period D of −0.05 feet. If the resulting 100-year

value is (falsely) positive, the fitting process continues iteratively

(using −0.10, −0.15 feet, etc.) until the estimated 100-year D

becomes a negative value.

Validation of the Gumbel fit and spatial
interpolation techniques

Model validation is then performed by statistically

comparing the estimated D at the 10-, 50-, 100-, and 500-year

return periods with the originally available Risk MAP-modeled

data. More specifically, the estimated D at the 10-, 50-, 100-, and

500-year return periods should be negative in flood-free cells

and positive in flooded cells, as represented in the originally

available data. Descriptive statistics are presented based on the

estimated and original D values, where the Gumbel distribution

is fit initially with the original available D data.

Then, four spatial interpolation methods are implemented

(one at a time, separately) to estimate Gumbel parameters (i.e.,

α and u) for cells having zero or only one non-null D values

(i.e., at the 500-year return period), based on values calculated

at cells with two or more non-null values. The validity of the

Gumbel estimation of D at cells having one non-null value is

assessed via the descriptive statistics of the difference between

the estimated and Risk MAP-modeled value at the known (i.e.,

500-year) return period, by spatial interpolation technique.

Sensitivity analysis

A sensitivity analysis is performed, cell by cell, to check the

extent to which the success of the estimation procedure, based

on the Gumbel parameters, hinges on the number of “known”

D values. The model fit is assessed separately via descriptive

statistics for the complete set of paired predicted vs. known D

values at a particular return period. At each cell, taken one at

a time, if D is known from Risk MAP-model-output at 10-,

50-, 100-, and 500-year return periods, the 10-, 50-, and 100-

year-return-period D values are used to predict the 500-year-

return-period D. An analogous procedure is used for cells that

have known D at three return periods. Similarly, the D values

at 10- and 50-year return periods are used to predict D at

the 100- and 500-year return periods. In each case, the model

fit is assessed separately via descriptive statistics of the paired

difference between predicted vs. known D.

Results

Data cleaning

The data cleaning process described in Section 2.2 is run on

the 121,215 cells in the study area. Data cleaning identifies 32

cells with D equal to zero (no cells have negative D), 3,575 cells

for which a shorter return period D equals or exceeds a longer

return period D, and 2,365 cells for which a positive shorter

return period D is accompanied by a “null” longer return period

D (Table 2). The original D values in these 5,972 cells (4.9% of

the initial cells) are thus unused in the analysis because they fail

one or more of these data cleaning tests.
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TABLE 6 Descriptive statistics and root-mean-square error for Risk MAP-modeled minus predicted 500-year D, for cells having only 500-year return

period flood depth, for the Metairie, Louisiana, study area, by moving average (31 × 31) and smoothing (3 × 3), inverse distance weighting, natural

neighbor, and ordinary kriging.

Interpolation technique Mean (in.) Standard deviation (in.) Minimum (in.) Maximum (in.) RMSE (in.)

Moving average and smoothing −1.14 1.30 −11.43 6.90 1.73

Inverse distance weighting −1.12 1.32 −11.43 6.92 1.73

Natural neighbor −1.11 1.33 −11.43 6.92 1.73

Ordinary kriging −1.12 1.32 −11.43 6.93 1.73

Gumbel fitting

Descriptive statistics for the scale (α) and location (u)

parameters are shown in Table 3. Once the α and u parameters

are corrected for all cells, they are used to extrapolate D for the

5,000-, 10,000-, 15,000-, and 20,000-year return periods in their

respective cells.

The smallest possible moving-average window that

interpolates all flood elevation values at extreme return

periods is 31 × 31 cells. Descriptive statistics for the spatially

interpolated and smoothed Gumbel parameters are shown

in Table 4. A negative value is found for u in every cell. The

Risk MAP-modeled 500-year D spuriously exceeds the spatially

interpolated 5,000-year depth in 36 cells (0.03% of the study

area), so correction procedures described in Section 2.4 in the

“fourth scenario” are implemented.

Validation

The procedure described in Section 2.5 regarding validation

of the distribution is implemented for the case study area.

Table 5 shows the descriptive statistics and root-mean-square

error (RMSE) of the difference between estimated and Risk

MAP-modeled data for cells having at least two non-null D

values. These results verify that a relatively small amount of error

is introduced in the estimation procedure, if it can be assumed

that the Risk MAP data are “correct.”

For cells having only a 500-year Risk MAP-modeled D,

the relative correspondence between the spatially interpolated

estimated 500-year D and that from Risk MAP is calculated

by spatial interpolation technique. Because of the strong

correspondence across spatial interpolation methods, values are

expressed in inches (Table 6). Results suggest that the selection

of spatial interpolation technique has little impact on the results.

Sensitivity analysis

The sensitivity analysis described in Section 2.6 quantifies

the rationality of using Gumbel extreme value distribution even

as the number of known points decreases to two (Table 7).

Results suggest that, not surprisingly, the increased magnitudes

of the 500-year D leave a wider range from which the estimate

can deviate from the actual D. Also, it is not surprising that

the largest standard deviation of this modeled-vs.-estimated

difference occurs for predicting the 500-yearDwhenD is known

at only two return periods. Nevertheless, even in such cases, the

RMSE falls within a half-foot.

Discussion and limitations

This method offers a means for circumventing the ever-

present dilemma of how to ensure high-quality modeling to

support planning for preventing, mitigating, and/or adapting to

future flood events when little measured data are available, for

locations where advanced hydrological and hydraulic modeling

has been conducted to determine estimate D at multiple return

periods. In the case study area in Metairie, Louisiana, only

∼5 percent of the cells failed the “data cleaning” tests, which

suggests that the modeled data are reasonable. Nearly all of

the spurious data occurred when shorter return period D

exceeds longer return period D or longer return period D

is null.

If it can be assumed that the Risk MAP-modeled data are

the “correct” values, the Gumbel distribution-generated flood

parameters are shown to be remarkably stable for simulating

and imputing D for various return periods. The fact that

u remains negative in all cases verifies that the correction

algorithm succeeded in ensuring that all terrestrial cells are

not submerged under normal conditions. The much smaller

standard deviation for α than for u is likely an artifact of the

small, homogeneously-elevated study area. As α represents the

slope of the Gumbel fit line, each cell in the study area will have

a similar relationship between D and P. This contrasts with u,

which can have a wider range of values, suggesting that some

cells are more susceptible to flooding than others, even within

the same neighborhood.

Validation and sensitivity analysis confirm that the method

is relatively insensitive to the spatial interpolation technique

chosen, at least for this study area. The relatively small errors,

as evidenced by the small RMSE values (see Table 5), even for

500-year D and even when D values for only two return periods
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TABLE 7 Descriptive statistics and root-mean-square error of the di�erence (1) between the Gumbel model-based flood depth (D) estimation and

Risk MAP-modeled D, when using D at known return periods to predict D at another known return period, for Metairie, Louisiana, study area.

Scenario Mean (ft.) Standard deviation (ft.) Minimum (ft.) Maximum (ft.) RMSE (ft.)

1 500-year depth using 10-, 50-,

and 100-year depth as predictors

0.32 0.22 −0.26 1.87 0.39

1 100-year depth using 10- and

50-year depth as predictors

−0.02 0.20 −0.46 1.09 0.20

1 500-year depth using 10- and

50-year depth as predictors

0.28 0.38 −0.46 2.65 0.47

are known, are interpreted as evidence that the procedure

is successful. The Gumbel distribution is deemed to provide

an acceptable result. However, the present work does not

consider the uncertainty in the Gumbel parameters. Moreover,

the relatively small RMSE values, even between estimated vs.

modeled 500-year D and even when D values for only two

return periods are known, imply that D can be estimated

relatively accurately and precisely. Such estimates can provide

engineers and planners with useful information for enhancing

infrastructure to accommodate low-frequency, large-magnitude

flood events. Although the method is computationally intensive,

it can be automated for improved D estimates for any location

that is “data rich” regarding D grids at multiple return periods.

Refinements in themodeled data for short or long return periods

may allow for further improved understanding of infrastructure

needs for accommodating floodwaters.

As with any research, there are limitations to the analysis

and interpretation of results. Flood hazard estimation is, by

necessity, based on such a limited number of data points, but

the availability of model output at only a small number of

locations and return periods necessitates use of this technique.

Moreover, the rounding of original FEMA-modeled values to

the tenth of a foot restricts the precision with which the results

can be presented. This method was applied to a relatively

limited geographical extent with homogeneous topography.

Future work should evaluate the performance of the method

across a larger geographical extent with more heterogeneous

topography. In addition, the effect of climate change on

flood hydroclimatology is not considered (Zhou et al., 2012).

Changing climate may alter the log-linear shape of the Gumbel

distribution, particularly if forecasts of increasing frequency

of extreme precipitation events (Intergovernmental Panel on

Climate Change., 2014, p. 8) prove to be accurate. Likewise,

differences in local land cover may cause differences in the

Gumbel parameters for D as a function of return period and in

generating a continuous surface using the spatial interpolation

techniques. Despite the fact that caution should be exercised

in the interpretation of results for these and other reasons,

the approach offers an advantageous “next step” in planning

for, forecasting, and mitigating the world’s most destructive

natural hazard.

Summary and conclusions

Existing D grids based on Risk MAP hydrologic and

hydraulic model output provide communities with guidance

data for anticipating and minimizing flood hazards. However,

these depth grids are only available for limited locations and

return periods. This study introduces a method for imputing

flood depths and elevations for areas considered at low- to

moderate-risk, where insufficient flood data are available to

characterize the hazard. The method involves fitting the Gumbel

extreme value distribution to rasterized flood data of flood

depth as a function of annual non-exceedance probability, by

cell. The method then uses the Gumbel parameters of scale

(α) and location (u) to extrapolate flood elevations at extreme

return periods for which it can be assumed that the study area

is entirely flooded. Spatial interpolation algorithms are used

to fill and smooth spatially the areas that are not flooded by

the 100-year flood, and Gumbel scale and location parameters

are determined for areas with previously uncharacterized

or minimally characterized flood hazards. Validation and

sensitivity analyses are conducted through comparisonwith Risk

MAP-modeled output. A case study in Metairie, Louisiana, is

used to illustrate the technique. For the study area, different

spatial interpolation methods produced similar results when

compared to Risk MAP-modeled output D grids. Validation and

sensitivity analyses of the case study illustrate that the method

offers improvements in characterization of flood hazard for

enhanced flood mitigation planning.

Overall, the method performed well across the study area.

The specific findings of the case study include that:

• the presented method is able to characterize flood hazards

in areas of low to moderate flood risk; for example, 100-

yearDwere predicted for cells with known 100-yearDwith

RMSE of 0.15 feet.

• spatial interpolation of extrapolated surfaces functioned

well, regardless of technique; for example, 500-year D were

imputed using spatial interpolation for cells with known

500-year D with RMSE of 1.73 inches.

• using 10-, 50-, and 100-year D as predictors, the estimated

500-year D had an RMSE of 0.39 feet while the estimated
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100- and 500-year D had an RMSE of 0.20 and 0.47 feet,

respectively, when using 10- and 50-year D as predictors.

Future availability of longer-return-period D grids, such as

for the 1,000-year flood, will enhance accuracy of our results.

Additionally, because many areas have modeled D for only

the 100-year return period or for no return periods at all,

operationalization of the technique for locations that lack high-

quality, modeled D at multiple return periods is needed (Shen

et al., 2021). Specifically, ratios between the 100-yearD and theD

estimated at other return periods, from nearby “data-rich” areas

such as Metairie should be calculated as shown here. Then, the

ratio between 100-year D and D at other return periods may be

used to derive D at other return periods where only the 100-

year D has been modeled hydrologically (i.e., “data-medium”

areas). Then, the relationship between ground elevation and

the 100-year D can be used to identify the 100-year return

period D for locations where no hydrological model output is

available (i.e., “data poor” areas), based on that from data-rich

and data-medium areas. Finally, if such modeling efforts yield

plausible results, estimation of D for other return periods in

“data-poor” areas can be made based on the Risk MAP output

from “data-medium” and “data-rich” areas.
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